

Kennedy Space Center

Self-Contained Atmospheric Protective Ensemble (SCAPE) Propellant Handlers Ensemble (PHE)

Presented by: Dennis Dudzinski, EG&G December 2, 2008

SCAPE-PHE

Kennedy Space Center

- Self Contained Atmospheric Protective Ensemble (SCAPE)
 - Predates Shuttle Operations (1960s)
 - Equipment has evolved to accommodate the needs for all programs
 - Current SCAPE (Propellant Handlers Ensemble (PHE)) have been in use since 1987
 - Used in IDLH Environments

SCAPE-PHE Modes

Kennedy Space Center

- Available in two modes
 - Category I: Self Contained Environmental Control Unit (ECU)
 - Mobile; not attached to an external air source
 - Internal Cryogenic Air Supply, ECU
 - Category IV: Airline Supplied
 - Airline Supply Required
 - Portable Air Supply Required for Ingress/Egress

SCAPE-PHE Features

Kennedy Space Center

- Features of the SCAPE-PHE
 - Detachable, variable sized boots and gloves
 - "Bubble" or Flat Visor
 - Internal Air Distribution System

Category I SCAPE-PHE

Kennedy Space Center

KSC Institutional Services Contract

Figure 1a

Category I SCAPE-PHE

Kennedy Space Center

Ancillary Equipment of Category I SCAPE-PHE

Kennedy Space Center

- Environmental Control Unit
 - Utilizes Locally Manufactured Liquid Air (20% 30% Oxygen)

Category IV SCAPE-PHE

Kennedy Space Center

Category IV SCAPE-PHE

Kennedy Space Center

Kennedy Space Center

- Research for an improved ensemble began in late 1970s and was driven by:
 - NIOSH (78-172 and 76-149) recommended changes in Allowable Exposure Limits for fuels and oxidizer used by NASA and the Air Force
 - An incident involving a Rocket Fuel Handler's Coverall (RFHCO) in an Air Force TITAN Missile Silo and personnel injury

Kennedy Space Center

- Design Challenges and Design Requirements
 - Single Point Failure Mode
 - Glove and Boot Disconnects and Seals
 - Visor
 - Vent Valves
 - Suit Fabric
 - Gloves
 - > Torso Closure
 - Communications
 - Emergency Air Supply

Kennedy Space Center

KSC Institutional Services Contract

Program Execution

- Survey of users of protective suits in propellant operations and of suit/component manufacturers
- Test program to evaluate propellant resistance and other characteristics of candidate materials and components for an improve suit
- Specification prepared to define and describe an improved ensemble

Kennedy Space Center

KSC Institutional Services Contract

Single Point Failure Mode

- Prevent/Minimize circulation of toxic vapors in the head area (breathing zone) in the event of a puncture or tear of the suit material
 - Evaluated manual mode change to head-only air
 - Evaluated neck ring with air to head first
 - Evaluated automatic mode change to head-only air
 - Evaluated internal face mask
- Design Preference
 - Manual Mode change to head-only air
 - Distribute 60% of air supply to head area at all times

Kennedy Space Center

KSC Institutional Services Contract

Glove and Boot Disconnects and Seals

- Prevent Liquid Impingement
- Visual and mechanical indicators that ensure reliable connections
- Design Preference
 - Aluminum Quick Disconnects with O-Ring Seal

Gloves

- Glove thickness limited dexterity and material became "sticky" when exposed to high concentrations of oxidizer
- Design Preference
 - The current glove was selected because it was the only one that adequately resisted propellants

Kennedy Space Center

KSC Institutional Services Contract

Suit Fabric

- Develop a more "Robust" fabric
- Improve Flammability
- Improve Maintenance
- Design Preference
 - Thicker Fabric developed which incorporates a wearindicator
 - Validated protection through Permeation Testing and Physical Properties Testing
 - Reasonable flame resistance

Kennedy Space Center

- Minimize/Prevent scratches
- Improve Chemical Resistance
- Design Preference
 - Polycarbonate material with Chemical Resistant Hard Coating

Kennedy Space Center

KSC Institutional Services Contract

Vent Valves

- Prevent vapor migration under steady state venting and negative pressure scenarios
- Testing performed in the NASA Lab using Helium to determine flow characteristics
- Design Preference
 - Implemented a diaphragm-type exhaust valve with a relief valve cover to direct air flow and provide impingement protection

December 2, 2008

Kennedy Space Center

KSC Institutional Services Contract

♦ Torso Closure

- Current closure design worked against the positive pressure of the suit
- Design Preference
 - Selected a zip-lock style closure with zipper reinforcement

Kennedy Space Center

KSC Institutional Services Contract

Communications

- Focus on standard system that would be common to all users
- Design Preference
 - Selected a headset and connecting cable to a bulkhead feedthrough on the garment fabric
 - External bulkhead connector allows for adaptation to other communications systems

December 2, 2008

Kennedy Space Center

KSC Institutional Services Contract

- Emergency Air Supply
 - Provide egress capability in the event of breathing air supply failure
 - Design Preference
 - Internally worn Emergency Air Supply with SCUBA mouthpiece originally designed
 - Unit increased ensemble weight and was discontinued
 - Egress capability accomplished through SCAPE Ventilators

December 2, 2008

Performance Validation of the SCAPE-PHE

Kennedy Space Center

KSC Institutional Services Contract

Protection factor testing

Overall Protection Factor of 50,000 for preoperational and operational exercises in Category I and Category IV Modes

Physiological Testing

- High and Low Temperature Operation Tests
- Manned and Unmanned Carbon Dioxide Tests
- ECU Testing in non-vertical attitudes

Other Testing

- Liquid Impingement Testing of ensemble from all attitudes
- Ensemble Exposure Testing
- Ensemble Fire Testing

Maintenance Testing of the SCAPE-PHE

Kennedy Space Center

- Maintenance testing validates continued performance:
 - Light Inspection (small holes)
 - Visual Inspection Material degradation and damage identified
 - Ensemble Leak Test
 - Airline Flow Test
 - Exhaust Valve Reverse Flow (Leak) Test
 - Quality Inspection/Verification
 - Boots and Gloves tested individually